
Periodicity and Self-Overlap

Casey S. Schroeder

May 11, 2013

email: cs@csschroeder.com tel: 312-546-3048

Abstract

It is easily shown that self-overlap can be defined in terms of periodicity, and
visa versa, should one allow for semi-periodicity. We show that the the minimal
period is also inter-definable with the concept of self-overlap (and the general form
of periodicity). By the minimal period we mean the |p| such that S = pq for
minimal length prefix p and q ∈ Q+. It is clear that we can define the minimal
period in terms of (maximal) self-overlap or (least) periodicity. However, it is less
clear that self-overlap and semi-periodicity can be defined, in general, in terms
of minimal periodicity alone. We give two recursive definitions of self-overlap in
terms of minimal periodicity and basic string operations. We show that these
definitions provide two simple linear time algorithms for finding self-overlap and
semi-periodicity, one of which is optimal given a step within the preprocessing step
of the Knuth-Morris-Pratt algorithm, running in time linear to the length of the
string.

1

1 Introduction

The definition of self-overlap may be formally given as:

Definitions 1. A string S =< a1, ..., ak > is self-overlapping at an index i or
self-overlapping with length i, if the sub-strings < a1, ..., ai >, < ak−i+1, ..., ak >
are identical, i.e. the prefix of length i is equal to the suffix of length i.

We will understand a string raised to a power, perhaps fractional, as the number of
times it is concatenated with itself, to the right. A sufficient definition of a period and
periodicity is then given as,

Definitions 2. For any S =< a1, ..., ak > and 0 < i < k, if S = gq for g =<
a1...ak−i > and q = k/(k− i), then |g| = k− i is a period of S. The set of all periods
of S is the periodicity of S.

Note now that the following equivalences also hold, and could also be used to define
self-overlap.

Equivalence 1. S =< a1, ..., ak > overlaps with itself at index i if and only if S = gq

for g =< a1...ak−i > and q = k/(k − i).

This being for the fact that we allow fractional periodicity (1 ≤ q < 2) in our definition
of periodicity. So it is clear that self-overlap and periodicity are inter-definable concepts,
namely.

Equivalence 2. S =< a1, ..., ak > overlaps with itself at index i if and only if k− i is
a period of S.

This broad notion of ’periodicity’, including as it does the full notion of semi-periodicity,
is the direct complement of self-overlap. Semi-periodicity is not always what we consider
the proper notion of a period. For example, the following string has a minimal period
of length 5

aabba|aabba|aabba|aabba|aa

multiples of this length are also periods, i.e. 10, 15, and 20, but we cannot cover the
full set of self-overlapping indices with multiples of this minimal period alone. Rather
we need to include a semi-period of 21

aabbaaabbaaabbaaabbaa|a

Similarly, the following has a minimal period of length 9,

ababaabba|ababaabba|ababaabba|ababa

and likewise, periods of 18 and 27; but also must include semi-periods of 29 and 31.

2

2 The Self-Overlap Theorem 1

We will here show that a definition of self-overlap (and semi-periodicity) can be given
in terms of the minimal period alone.

Definitions 3. For any S of length k and maximal index of self overlap i, if S = pq

for p =< a1...ak−i > and q = k/(k− i), then |p| = k− i is the minimal period of S.

To understand the adequacy of this definition, consider the following relationship:

a1...........ak−i+1....................................ak
a1...........ak−i+1......................ai...........ak

a1...........ak−i+1.....................ai...........ak
. . .

. . .
. . .

And convince yourself that if there is a minimal period of k − i, then there will be
this overlap relationship, and if there is this overlap relationship, then k − i is the
minimal period.

Self-Overlap Theorem 1. The indices of self-overlap for S are given by the set
SOver(S), defined in terms of the minimal period |p| of S, where q = |S|/|p|, as

SOver(S) = {i 6= 0 : i = |S| − |p| ∨ i ∈ SOver(pq−1)} (1)

Where pq−1 for q − 1 = 0 is understood to be the empty string and SOver(′′) = {}.

Note that we assume that p and q may change in our recursive calls to SOver. This
makes the relationship very easy to prove. There cannot be self overlap at indices from
k to i+ 1 or p would not be minimal (i maximal), so all self overlap must occur from i
to 1. If we add i to the set, all additional self overlap is equivalent to self overlap for a
shorter string, precisely pq−1 with length i = |p| ∗ (q−1) = |S|− |p|, so we can evaluate
this string with SOver to get the remaining indexes of self overlap. Using the diagram
it is easy to see that after adding i to the set, all additional self overlap must occur on
ak−i+1....................................ak = pq−1, which is the string occurring at both the front
and the back of our initial string.

3 The Self-Overlap Theorem 2

The basic definition above assumes that we must make a recursive call for each short-
ening by the minimal period. If we know the length of the string in advance, we can
do better. The considerations of the first section indicate that the oddities to defining
self-overlap in terms of the minimal period occur at the end of the string. This suggests
the following piecewise definition of the set of indexes of self-overlap in terms of the
periodicity of S.

3

Self-Overlap Theorem 2. For any S with length k and minimal period |p|, the indices
of self-overlap for S are given by the set function SOver(S), where q = |S|/|p| and n
and f are the integer and fractional part of q respectively:

q = 1 : SOver(S) = {} (2)

1 < q < 2 : SOver(S) = {k − |p|} ∪ SOver(pf) (3)

2 ≤ q : SOver(S) = {k − i|p| : 0 < i < n} ∪ SOver(p(1+f)) (4)

Formally, p may be calculated from S and |p| by basic string operations, as the prefix
of S of length |p|.

This essentially provides an analytic treatment of what would otherwise be many re-
cursive calls. We must show that SOver returns all and only the indices of self overlap
for any S.

Proof of Clause 1. For the first case where q = 1, the definition is the same as the
previous definition so there is nothing further to show.

Proof of Clause 2. For the second case, where q is in the range 1 < q < 2, the
definition is the same as the previous definition so there is nothing further to show.

Note: 1. We note, however, that the recursive call to SOver in the second clause is
necessary and does not represent a special case to which some trick may be applied. To
show this, we can note that pf could be anything (at least without adding constraints to
our underlying alphabet). Consider only the following pattern:

p = {A− Y }n + Z (5)

which is intended to say, set p equal to any string of some length n constructed from
letters A to Y, and concatenate it with the letter Z. Now consider,

S = p(1+n/(n+1)) (6)

This string could have any string as a fractional suffix, failing one containing Z, so
(with no constraints on our alphabet) there is nothing else that can be done but to ask
about the self-overlap of this suffix as well.

Proof of Clause 3. For the sub-case where q is in the range 2 ≤ q < 3, this definition
is also the same as our previous definition. It remains to show that for 3 ≤ q all further
indexes of overlap are restricted to be j, such that j < |p|(1 + f).

First it is clear that if p is minimal in a string S = p(n+f), then (left) concatenating an
additional p to obtain the minimal extension of S, will yield an S+ = p(n+1+f) with
the same minimal period |p|. This is enough to show, that if S+ is a minimal extension
of some S = p(n+f), then there will be no j, such that S+ self overlaps at j > |p|(n+f),
otherwise p would not be minimal in S+. So it is clear that we can recursively strip

4

the same p until it could no longer be the minimal period of the resulting string, and
all indices of overlap must occur on the minimal period intervals according to clause 3.

What we will show is that for any S = p(n+f) for n ≥ 3, S is a minimal extension
of S′ = p(n−1+f). Therefore, all indices of overlap for any S = p(n+f) with n ≥ 2 has
indices of self-overlap only at it’s minimal period intervals except possibly at the indices
j < |p|(1 + f), so one can strip the same minimal period from any S until S∗ = p(1+f)

and not change the minimality of p. So clause 3 will apply to any such S.

Lemma on Periods 1. For integer n ≥ 3, proper fraction f , and any p: if |p| is the
minimal period of S = p(n+f), then |p| is the minimal period of S′ = p(n−1+f).

Suppose that a string S = pq exists with q ≥ 3, which is not a minimal extension. Then
there exists a string S′ = pq−1 which has a different minimal period |r|. Then |r| < |p|
because |p| is clearly still a period of S. If |r| evenly divides |p|, then |r| must be a
period of |S| as well, and hence |p| is not minimal in |S|, so |r| must not evenly di-
vide |p|. S′ still contains q−1 ≥ 2 copies of p, so the following relationship exists in S′:

a1.................a|p|+1.........
a1.................a|p|+1........

Where a|p|+1 is left of the center of S′. S′ has a minimal period smaller than |p|,
so we have the following relationship too:

a1..........a|r|+1...............a|p|+1.........
a1..........a|r|+1...............a|p|+1........

Combining these, we have the following relationship:

a1..........a|r|+1...............a|p|+1.........
a1..........a|r|+1...............a|p|+1........

a1..........a|r|+1...............a|p|+1........

Now we have not claimed any restrictions on |p|/|r|, but that |p|%|r| > 0, so imag-
ine we overlap S′ until the difference between n|r| and |p| is |p|%|r| as follows:

a1..........a|r|+1.............an|r|+1..a|p|+1.........
a1..........a|r|+1.........................a|p|+1........

a1..........a|r|+1.........................a|p|+1........
...

...
a1..........a|r|+1............an|r|+1...a|p|+1........

You can see that our second string copy overlaps our final string copy at an index
of overlap of k− (|p|%|r|), which must be greater than k− |r|, and therefore |r| cannot

5

be the minimal period of S′ contrary our assumption.

Note: 2. Note that including the full period (1) as well as the fractional part (f)
in the recursive call to SOver in the third clause is necessary. Consider only the
string S′ = aaaabbaaaaabbaaaa. If we divide by the minimal period aaaabba, we have
aaaabba|aaaabba|aaa. So S′ is an extension of the string aaaabbaaaa by the period
aaaabba, but aaaabba is not the minimal period of aaaabbaaaa (which is aaaabb). So
S′ = |p|2+(3/7) has minimal period of aaaabba, but is not the minimal extension of any
string. You can think of this as: until a period repeats in full it’s ”real” minimal period
is under-determined. For this reason, we must make our recursive calls to reevaluate
the period for p(1+f). Though perhaps this full recursive call is non-optimal and the
string p(1+f) can be further reduced.

This completes the proof. We only remind the reader that the periods of S are simply
k − i for each i in SOver.

4 Relationship to Knuth-Morris-Pratt

The general problem of finding the indices of self-overlap of a string can be solved by
brute force in O(n2) time. One might clearly expect that string matching methods
like that found in Knuth-Morris-Pratt (KMP) [4] can improve on this. KMP has two
steps to solve the general problem of finding all occurrences of one string in another.
The first is the preprocessing step, which amounts to the construction of a Next table
of values which tells the algorithm where to begin again if a mismatch is found. As
applied to the problem of finding the indices of self-overlap, a step to creating this
Next table is the creation of a table f , which effectively finds the maximal self-overlap
of all the prefixes of the string. This table f we will call the MSO table.

The basic algorithm is as follows:

def table(word):

pos=2

cnd=0

MSO=list()

for c in word: table.append(0)

table[0]=-1

table[1]=0

count=0

while (pos<len(word)):

if word[pos-1]==word[cnd]:

cnd=cnd+1

MSO[pos]=cnd

pos=pos+1

elif cnd>0:

6

cnd=MSO[cnd]

else:

MSO[pos]=0

pos=pos+1

count=pos

return table

This will produce, for example, the following array for string N=”aabaaabaabaaabaabaaa”

MSO=[-1, 0, 1, 0, 1, 2, 2, 3, 4, 5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

For the purposes of their algorithm, this is used to indicate that if there is a fail-
ure while matching the string N against another longer string, M, at a given index i of
N, the matching can start again at the current position in M, and at index MSO[i] of
N (MSO[0]=-1 indicating to advance N against M and begin matching from i=0). The
rest of their pre-processing is for the sake of making greater shifts in N against M.

To make use of this algorithm for our purposes, we feed the algorithm a modified
string, e.g. ”aabaaabaabaaabaabaaa*” which contains the special character ’*’ that is
not otherwise in our alphabet. Feeding this string to the algorithm, we also get the
maximal self-overlap of our string of interest, ”aabaaabaabaaabaabaaa” itself, in the
final position. We can then recover the indices of self-overlap directly using a variant
of our definition as follows:

def SOver(MSO,length):

max=MSO[length]

if max<=0 return []

indices=list()

indices.append(max)

indices.extend(SOver(MSO[0:max],max))

Alternatively, we can convert the number to the minimal period and apply our
definition directly. Moreover, our second definition will give an optimal lookup of the
indices of self-overlap from the MSO table as follows without recursion:

def SOver(MSO,length):

i=length

indices=list()

while i>0:

max=MSO[i]

per=i-max

rem=i%per

num=i/per /*floor division*/

if num>2

for j in range(2,num)

7

indices.append(rem+per*j)

i=per+rem

else:

indices.append(per+rem)

i=rem

In sum, there are some interesting and important algorithmic implications that
result from this relationship between self-overlap and periodicity. The set of indices of
self-overlap of a string can be found in linear time - from the linearity of the KMP [4]
preprocessing algorithm and that the additional processing will run in time less than N.
Our proof of the second theorem on self-overlap indicates that the second definition of
self-overlap makes optimal use of the table of maximal overlap/minimal periods given
by the KMP to extract the indices of self-overlap.

It has not been shown that this algorithm itself is optimal for the task of find-
ing self-overlap. Only that it is optimal given the table provided by a step in KMP
preprocessing. It remains to be shown whether this relationship can amount to any
optimization of the preprocessing step of KMP over the optimizations given there or
whether it may be an explanation why optimizations there are optimal.

5 Other Applications and Acknowledgment

Self-overlap is surprisingly important to probability [3]. A given string’s overlap prop-
erties help determine how long one must wait for such a string to occur in a process gen-
erating characters, whether that process is uniformly random or otherwise distributed.
This has clear applications in some forms of financial instruments [5], and possible
applications in checking if pseudo-random processes are sufficiently random. This work
was inspired by [3], [2], [1], and later [4].

References

[1] Amir, A. and Benson, G. (1998). Two-Dimensional Periodicity in Rectangular
Arrays, SIAM J. Computing 27, 1, 90-106.

[2] Apostolico, A. and Breslauer, D. (1997). Of Periods, Quasiperiods, Repetitions,
and Covers. Structures in Logic and Computer Science Lecture Notes in Com-
puter Science, 1997, Volume 1261/1997, 236-248.

[3] Blom, G. and Thorburn, D. (1982). How many random digits are required until
given sequences are obtained? J. Applied Prob. 19, 518-531.

[4] Knuth, Donald, Morris, James H., jr, Pratt, Vaughan (1977). Fast pattern match-
ing in strings. SIAM Journal on Computing 6 (2), 323–350.

[5] Schroeder, C.S. and Di Pierro, M. (2011) ‘Pattern Derivatives’, Int. J. Financial
Markets and Derivatives, Vol. 2, No. 4, pp.249–257.

8

